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Abstract
It was recently stated that fast atomic jumps observed in quasicrystals are a
common feature in metallic alloys. We explain why this is not correct.

Recently Dahlborg et al [1] stated that fast atomic jumps are ‘not a special property for
quasicrystals’. To remove the ambiguities inherent to this assertion, we would like to point
out the following:

(1) Although fast atomic jumps may indeed not be unique to quasicrystals, it is just not true
to suggest that they would not be exceptional.

(2) In order to put things into the right perspective, we must add to this that we consider a
discussion in terms of the qualifiers ‘special’ or ‘not special’ as completely inappropriate
in view of the scientific motivation of our work [2, 3], which was to answer the question:
what is a phason in a quasicrystal?

Following the logic of reference [1] it may seem contradictory that atomic jumps are not
‘special’ in a solid, while phasons in quasicrystals are. The solution of this apparent paradox
lies in the fact that an essential piece of information is missing in its formulation, namely that the
sites that are visited by the quickly jumping atoms in a quasicrystal are somewhat uncommon,
while those in a classical alloy are indeed in no way unusual. As a matter of fact, the ‘phason
sites’ in a quasicrystal are neither interstitialcies nor vacancies as in a regular solid, because it
is impossible to have two sites that are linked by a phason jump occupied simultaneously by
atoms [4]. These sites have therefore in some cases been dubbed ‘half-vacancies’ by Gähler
and Roth [5] and they do not have a counterpart in periodic solids. The ‘phason jumps’ are
expected on the basis of all relevant structural models [6] and there is no reason to question
our attribution of the quasielastic signals observed in terms of such jumps. We think that this
is the main point. We must further take issue with a large number of points in the paper by
Dahlborg et al that are wrong, ambiguous or lack precision.

Information on the temperature dependence is lacking in that paper. Should the temp-
erature dependence in their sample turn out to be conventional rather than exceptional as
in quasicrystals (a property reflected in the introduction of the terminology ‘assisted’), then
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the whole of the apparent similarity between their results and those on quasicrystals would
disappear, while this alleged similarity serves as the sole and unique rationale for the authors’
claim that the fast atomic jumps would be a common feature in alloys. A similar observation
applies to the Q-dependence of the signal (see below).

What Dahlborg et al also fail to stress is that their sample is really exceptional and un-
typical, i.e. that it cannot be considered as representative for alloys in general by any standards,
in that it is a B2 phase and as such may harbour up to an incredible level of 12% structural
vacancies [7], which could play some rôle in the jumping process itself or its possible assistance
scenario. It is not by finding one single (probably equally exceptional) case in another solid that
one proves that fast jumps would be a common feature in alloys provided that the temperature
was high enough. Such an unfounded extrapolation (based on a single observation) runs
contrary to the entire body of existing data on self-diffusion in metals, which is vast.

In fact, Kaisermayr et al [8] have recently studied the (documented and simpler class) of
archetypal binary B2 phases by means of quasielastic neutron scattering experiments on NiGa.
This B2 phase does not exhibit ultrafast (� ≈ 500 µeV) atomic jumps. Despite the fact that
they are described as exhibiting record-setting fast diffusion, two other alloys investigated by
Vogl’s group [8], namely Ni3Sb and Ni53Sb47, also fail to comply with the predictions made by
Dahlborg et al. Dahlborg et al introduce here also a proviso that one must consider as ad hoc,
by restricting some of their claims to ternary Al-based alloys. In relation to this, we may also
mention a previously reported experiment on α-Al55Si7Cu25.5Fe12.5, where close to the melting
point there was a total absence of evidence for hopping on the timescales accessible to the
T.O.F. (time-of-flight) spectrometer MIBEMOL (h̄� ∈ [50, 250] µeV). This information has
now been completed by Mössbauer spectroscopy data from Brand [9] and co-workers whose
measurements do not reproduce the strong and rather abrupt change of slope in the temperature
dependence of the Lamb–Mössbauer factor that one observes in AlCuFe quasicrystals and
approximants, and which marks the onset of phason hopping [3]. We mentioned in previous
papers the cases of Hf and β-Ti which are considered as examples showing extremely fast
self-diffusion in metals, but which actually show self-diffusion two orders of magnitude
slower than what one observes in quasicrystals. Hence all experimental results available
except those reported by Dahlborg et al contradict the viewpoint that ultrafast atomic hopping
would be a common feature for non-quasicrystalline alloys. It is precisely because they are so
exceedingly fast (combined with intrinsic limitations on the signal/background ratios accessible
in the methods that he used) that the phason jumps eluded detection in the surveys of Janot
[15, 16], who (at that time quite reasonably) considered that only the techniques of Mössbauer
spectroscopy and neutron backscattering would be viable candidates for unearthing a first
fingerprint of this kind of dynamics.

Dahlborg et al state that positron annihilation experiments provide evidence for the
existence of ‘large’ concentrations of thermal vacancies in quasicrystals, but do not cite
more reliable results from Mössbauer spectroscopy [10] which contradict [4] these claims
and suggest instead that these concentrations are not so high. Also, the fact that the diffusion
constants in quasicrystals are rather low [11] corroborates the idea that thermal vacancies are
not so abundant, independently of whatever might be the ultimate verdict on the importance
of the Kalugin–Katz diffusion model [12] for self-diffusion in quasicrystals.

As Dahlborg et al argue that the fast jumps will occur whenever the vacancy concentration
becomes high enough at elevated temperatures, one would be inclined to understand that the
jumps are thermal-vacancy mediated, but the authors also claim that the jumping atoms are
located on interstitialcies. If we nevertheless try to make sense of this, perhaps we should invoke
a scenario of jumps between interstitialcies assisted by the passage of thermal vacancies in
their neighbourhood. There is nothing against such an idea, but one could reasonably start



Comment 8871

pondering such considerations only after having established that the temperature behaviour is
of the ‘assisted’ type.

Dahlborg et al claim that the structure factor of the elastic scattering signal proves the
existence of atomic jumps at 570 ◦C but that the relevant quasielastic intensity is not detected,
probably as it cannot be observed under the prevailing conditions of experimental resolution.
This is just wrong. If the signal is too narrow it will be integrated into the resolution-broadened
‘elastic peak’. The structure factor of the effective sum of the elastic and quasielastic signals
within this resolution-broadened ‘elastic peak’ will then (see equations (4) and (5)) be a
constant (apart from the Debye–Waller factor), just as though there were no jumps at all.
If the quasielastic signal is broad enough but too weak, then again the ‘elastic’ signal should
have a constant structure factor, owing to the very same sum rule as we just invoked. To
conclude this argument, let us point out that it would be far-fetched to suggest that the signal at
570 ◦C could be missed because it is too wide and therefore leads to a flat contribution, since
(1) it cannot be upheld seriously that a jump process would be so fast that its detection would
remain elusive under the experimental conditions used on MIBEMOL, and especially since
(2) at higher temperatures, where it should a priori be even faster, it did not go undetected. Once
this point has been made, we must come to the following conclusion: if the elastic intensity at
570 ◦C is modulated in the absence of quasielastic intensity, then the elastic intensity at 920 ◦C
cannot be used to draw conclusions about the quasielastic intensities—as is done in figure 8
of the paper by Dahlborg et al, where they are based on a misinterpretation of an elastic signal
that is due to static short-range order [13]. A whole chain of conclusions on the geometry of
the jumps has been built on this analysis.

Recent additional results indicate that the atomic jumps in AlMnPd are correlated [14].
There are no analogous results available for the B2 phase (see above). The very unusual
character of these correlations in QC further emphasizes that a comparison between B2 phases
and QCs is partial when it uniquely focuses on a similarity of the jump rates. In this context, we
should mention that the statement by Dahlborg et al that we would have observed correlations
in AlCuFe is erroneous. It is based on a misunderstanding of the paper cited [14], where
figure 2 was only illustrating one possible example of an assistance scenario among many
other alternative possibilities discussed in the same paper. There is nothing in the AlCuFe data
that enables us to decide whether there are correlations between jumps or not. We must further
point out that if correlations of the type illustrated in that figure were present in AlCuFe, then
they could not produce the collective effects uncovered in AlMnPd, which require a much
more unusual mechanism.

Dahlborg et al state that their claims that fast atomic jumps are a common feature in alloys
at high temperatures are confirmed by results of Mehrer’s group, but on consulting the papers
cited, the reader will notice that there is no experimental evidence of this type at all in these
references [11].
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Brand R A, Voss J and Calvayrac Y 1999 Mössbauer Spectroscopy in Materials Science: Proc. NATO Advanced

Workshop (Senec, Slovakia, 1998) ed M Miglierini and D Petridis (Dordrecht: Kluwer) p 299
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